=
A,
gzt

el
H
o
T wanms

4 3 1 e
¥y { ¥
Uad JLG ik

Book Nq. Tk

Copy No. &%

Amendment No. 3

@ The Copyrightin this cio-cumen: is tha proparty of Elliott
Flight Automstion Limited. The cceumeant is supnlizd by
Eliiott Flight Automation Limited on the express tarms that
ftistobe trestzd a5 confideniial and that itmay rot ke cooied
used or disclosed to others for @0y purpose except as zuthe
orised in writing by this Comgany.

AIRBORNE COMPUTING DIVISION

ELLIOTT FLIGHT AUTOMATION LILITED

PREFACE,
s oo c;%;:,sc;ﬂ‘%;:s’:ﬁ ﬁ&u %ﬁimaﬁ &?M e

b= PSS QIR /%;1&% Es,,m%ié Made. 3

2- PRES SiE, i f“‘?h Binwiny Mode 3

S
|- PASS SR Options (Myled
SPASS e Options (Mgl

“T}’ﬂﬁﬁ enoblz mgxcj»s.uu. Cﬁm priree ORI 1 s (YN tea Smxwkieﬁ’%i’:
Sorven B v o ovey G403 08, ot 920 i

K win bepr paeder Mede 3

Tz ebosa PAse SR needh 2-PA%Y SR Lol éjsisﬁiﬁrjm [
AGD ~ [panas telsesde awel 20 Tefecovbin,
i & N “gdr sy, éﬁc‘;} @ y‘ﬁi:,; !.M Q&JJ};&“

brpes wladd ﬂgf«ﬁu e OVe code el

Thne, (,5 e t_a_c&,;%s:,? mo(i_gﬁs G Te,ipwyégﬁ M,g:({w I{ ‘3‘._; o {,«‘; b T qz.,gi

(&,f.& t%,v_;w %’g'\é‘s "{C 3ITLE L\'ﬁs 5 &.Ms-&jﬂ ‘{;‘&.&, Q D ?” h";ﬁ"—;} t:"? é’}{. rf.‘f’rv-.-ma 5 CLV\A
R. C, :Z) . th@r\f‘w,.g CAJ"{,:Q, LQ..%? oo k"-'D :-w t’ews %m"& e M\ML L-"‘s
Bowle (06 ‘03f905(a0e USEFw NOTES Y,

T i'lc‘%:*‘"ﬁ” whers G uvsgm.«ﬁ-\;ﬁ,«im u‘.;\‘é‘gu ‘?133, Fig?, i Ciq_g

mp«cﬁfw:v'..g - m.,"'t{x, ci_,«‘_,;'i(Sl K (5 .@qrﬂs A, Ms;@ \'.‘s &«ém-h«..,wi,.wissgi "
wh
peod Bosi s “4n3 SR PROGIAMMERS quvne asl

L Ve | “?c;z,,f’ a80 S8 Cerurse Robe,

24371, Binen Mode 3

5&5}

I

=

hind

W

3 w3
ey . Lo =

al @

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

5:

10:

PM&“&.QH—, E. C{:é,miﬁﬁ‘v‘w

INTRORPUCTION ‘

1.1 General.. v vh ve ve vk e
. Glossary. oftelms e et e e he e e e
'New line' 8€QUENCE.. v vv 4e 40 vu ae a0 oo s
Six bit internal code .. i v. vh vk ee o ea e

bd et e et
U1 b N

WORDS . 0 tt vt et vt cn et et e e e e e

BLOCKS L. i v e ve vn et on ws en ve 54 un

IDEN I’LFTLRS
4.1 Global and Sub- Globu] Identifiers v4 e &
4,1,1 Global Identifiers o0 oo +0 o4

4,1.2 Sub-Global Identifiers .. .v v o oo
4‘&' 103 Exam}:)}.e Py :.t L2 s 2 & E 2 s m# s %

4.2 Local IdentiflieTs.. ve ve vr ve 0 vt o ne v u
4,3 I.,abels and Declarations

4.4 IExample .,
INSTRUCTIONS

5.1 Absolute AQdresses, . .. vv ve cr o0 or oe

5.2 Relative Addresses .,, .

5,3 Identified Addresses .,

5.4 literal Addresses ., vh w4 va ew e
5.4.1 Quasi-instruction .. ., ., . ..

CONSTANTS

6.1 Integer and Fractions,., w. V. o. vy v 2030 03
6.2 Octal GrouPs vt vt ve ve e b e ee e
6.3 Alphanumeric Groups.. +. .

6.4 Pseudo-Instructions .. ,, vv vv vu os W
SKIPS

7.1 lLabelled Skips vc vv 4a
COMMENTS & TITLES tt v vh vh vt ve v e ee

END OF TAPE AND END OF PROGRAM SYMBOLS
9.1 End of tape symbol (halt code}..

9.2 End of program symbol {(%)..

SPECIAL FACILITIES

10.1 Patch and Restore .. ., .. v v v s 24 » .
10 1.1 Patch .. ve vimis s o se ae oo on o
~ 10, 1,2 Restore s e e e e e

10. 2 %Tym&cm%wims’ssm

- Elements ofSER?roglams e e ee ew e v e

16
17
18

19

20

21
21

22
22
22
23

-

Ll

| | hPage
Chapter 11: OPTIONS FoR I-FASS Si2 -
. 11.] Yoad-and-Go mode ., vy ve vs ve on e ue . 25

11,2 Non Load-and-Go mode .. vy vs vr ve ve ve o 26

I1.3 Check 10G€ o0 1) vt v vt e er e ve ae e u 2T
11.4 HLlgwes of non load-and- go assembly, 27
11.5 Summary and Examples of Options ., .., 28

Chapter 12: ASSEMBLY AND LOADING OF SIR TAPES witi -faSS Sio
12,1 Assembly of SIR Tapes .. v v vs cv vr o4 o 29
12.1.1 Load-2nd-Go Mode.. o0 o av vu o0 .. 29
12.1.2 Non Load-and-Go Mode .. ,, 29
12.1.3 Checking Mode vv v ve v ve 4w vr on 29
12.2 Loading of Relocatable Binary Tapes 30
12.3 Mixing of RLD tapes and mnemonic tapes .., .. 31
12.4 Loading programs into the high end of the store 31
I8 5 Compobmbiiity with eadior issves o i~paSS SR 3
18.6 M‘d.{b’u’?\s‘& ?“vt:esrbm C\-‘SSOMLS 3tA

" Chapter 13: ERROR INDICATIONS,
13.1 Layout of Error Indications and Their
Effect onn Assembly .. vv «r ve vh er ve e an 34

13.2 Examples of Assembly Error Indications 34 .
13. 3 Ervor Indications given during loading of yor o 4
relocatable binary tapes.. oo v vv vv v ee e 35

Chapter 14: EXAMPLE OF A SIR PROGRAM _ . .
14- 1 Notes * * L L . = . . & > +« 4 .« ¢ . & L] .‘ * 0 & & LN 38
14,2 Layoub .. v s vt as o0 o0 w0 50 20 c0 a0 o 38

Chapter 15 SUMMARY OF ENTRY POINTS Of {-?a38.218 39

Chagtec 161 STORT Usid 87 1-eass SIR . o own e e oo 39

Chagbse 14 : 2-PASS SIR

Pl Genemt Dasorighuen 40
& TTrigger Feciliby ﬂ
L3 Opons]
19.4. Literals o
4.5 Asserbly & wa}&;’g;lw;'ﬁ , & Ee lolsel sk »
ek -h ;
o g tae dickiovan, b oasse -_f-,,wjai,,w«@ '{Mﬂﬁ (s
- W
" %umw@ﬂ F Erroc adicebiond 46

: & . : 9.8, Sum Mﬁmﬁ ok Euibf:j fendn ' 4 :§

A

9. 4. Binzny bopag %zut'}!j&;;\&t.f;g\l by Epi’if‘a.&? SR ki

ee

H o

Thwefe pobes dascde e W
tlok e weeder is %xwdifl\w

reunebeine ~ e

g e G gaﬁ,%,%:{aﬁ»r”&
o 990 Al

o ﬁ%@.éﬂv " g?m&i ?um&fiﬁ &M-f«%%
assemlotes

T whie Lo,
:{g,\r? i e, i;;et::_,e:.w&

foo oo V6384 - sod cheee

Boti, e $evmdato g G o &?m«a’%é

Tela el s e

GO b&f,&mﬁ,ﬁé&,)

%Gtﬁv‘ PPN P Ww&.ﬁ e vemelsr

Cce,{iﬁm ughe roaels L b%ﬁ.b@ﬁ;;}-ﬁzﬁga
Cﬁ&,;.@,? {?ﬁfﬁ"é roesd. b f:g:j it

Cassemddler i

G progiee
o

4 ol

£

gCN ig;l 4“5}{_ - ?mjﬂ"y v § . i’m

oV
T proges e ot

7

[XLV "{,.911"-%«’% ¥ Y
o (I

i_&fj«;i .

CauTion,

teBue of D-PAss s
hat hoan wwad e MAKE
e L2394 « Loswmest gg“tﬂ%‘“&»

ot arisew ko cHeox

f«ﬁxm?&c‘*,

%UZULLM

. ‘)
BT LA Ay w%w

’s}? (:Q @,,,i.“g&.:?’"‘,m ;:

£t
DG o g

@55 @Woi? im, Gangd, LAY BAR

wil 403{90¢ (490

(=2

_ 403, 903
Q149w orpnl

Sk
T S«n ?wif

£

shivea,

for m“%‘v":g f *a"ﬁéwz,»- v

s A0~ kN %:-vim

'

oyl g L oo mg,}imm-’%f%

bto relsash 'gﬂt«frmmm&

-PASS w1e)

e I

RS e eah A i
:@ C?’i.kr L8 g:i Yl g,
4000 er SLOU e

e comploted,

st S
I
—_ f},@‘ 5

X

%
asserailae 1t

d_;z‘;;-:,.)

E::a..(w_s
Ho ke
{‘-’C}x;‘f«: &

. o
Lung Aol

L ' :L\CS
o PRV Ty

w
L:%M .

R

ki
Vi@

PR

Ht

M

e
“Chapter 1: INTRODUCTION
1.1 General
_ The Symbolic Input Routine (SIR) enables programs
to be written in a modified form of machine code which has two principal
advantages over machine code:
(i) It is not necessary to specify the absclute address

of a store location used-in a program. Locations
may instead be referred to by names invented

by the programmer and the SIR assermnbler will
allocate a specific store location for each such
invented name.

(ii) It is possible to write instructions using
constants, without specifying where the constant
is stored., Instead the constant itself is written
in the address part of the instruction.

l-pnss Programs written in SIR code can be assembled
by means of the:ASIR assembler in two ways, load-and-go and non load-and-go.

(iii) Programs assembled in load-and-go mode are
loaded into the computer ready for triggering.

(iv) Programs assembled in non load-and-go mode,
however, are output in a relocatable binary code
so that they can be entered into the computer by
means of the SIR binary loader mublng Al
I-FASS SR, The reason for
having this alternative mode of assernbly is

P e given in chapter 11. 3.
ﬂ:&('aMS coniidan v SIR code Caan olfo %:.{_ MSQW.S!;:-‘};“-_:}’\ b’:} 2-(ﬁS$’ $“Q'
1.2 Glossary of terms. -

In the following glossary a brief explanation of each term
is given followed where necessary by a reference to a chapter where a full
definition or explanation is to be found,

ALPHANUMERIC CHARACTER any tape character which has a six bit internal
code representation (6. 3)

ALPHANUMERIC GROUP a group of threce ALPHANUMERIC CHARACTERS -
a type of constant (6. 3)

ASSEMBLER the program which reads and franslates programs written in
SIR code (12.1)

BLOCK the main division of a PROGRAM: It comprises a GLOBAL IDENTIFIER
LIST followed by a CODE BODY (Chap. 3); anst shewld be iss{'.{:;:;.icvd, by BN e B

1

” "

BLOCK RELATIVE ADDRESS (N;) the address of 16cation N of the current,
- BLOCK, where N is an unsigned integer. (The first locatmn of a

BLOCK is relative location zero) (5. 2. ii). {(ohsoletsd

CODE BODY all that part of a BLOCK other than the GLOBAL IDENTIFIER
LIST. It includes constants, instructions and work-space {Chap. 3).

COMMENT information inserted in a SIR program which may be meaningful
to human beings, but is ignored by the ASSEMBLER. Comments are
enclosed in round brackets () (Chap. 8). Se &ise TIVLE

CURRENT PLACING ADDRESS {(CPA) the address where the nextzwohrd will

" be placed by SIR (10.1). elso called Svore fotsteR (€83,

CURRENT PLACING ADDRESS RESERVE (CPAR) a location holding a
former placing address used in conjunction with the PATCH and RESTORE
facilities (10. 1).

DECLARATION the use of an IDENTIFIER as a LABEL {Chap. 4).
DICTIONARY the part of the computer store in which the ASSEMBLER keeps
a list of IDENTIFIERS, INCREMENTS and LITIERALS together with references

to the locations to which they refer., Also the list itself.

DIRECTIVE a PATCH, RESTORE, SKIP or OP TION (qgv.). Directives tell
the ASSEMBLER how and where it is to store the translated program.

GLOBAL IDENTIFIER an IDENTIFIER having the same meaning in several
PROGRAMS (4. 2).

GLOBAL IDENTIFIER LIST the list of GLOBAL and 5UB GLOBAL
IDENTIFIERS, valid in the BLOCK it heads, that is enclosed in square
brackets and occurs at the head of each BLOCK (4. 12}.

HALT CODE a character punched on a SIR mnemonic tape, at the beginning
of 2 newline, which causes the ASSEMBLER to wait, (e be writha

IDENTIFIED ADDRESS an address consisting of an IDENTIFIER alone or
an IDENTIFIER followed by an INGREMENT (5. 3).

IDENTIFIER an inv.ented name used as substitute for an address (4).

-~

-INCREMENT a signed integer fallm fmg:, an IDENTIFIER to modify its meaning {5,323,

!NTF-&M““‘WWQ TAPE ¢ $ua amLaarﬁs’?’ﬁif;m SUNARY THRE -

LABEL an IDENTIFIER preceding a word and referzing to the location

containing that word (4. 3).

LABEIL LIST a list of LABELS together with their addresses whlch can be
Fumtwﬁ during ASSEMBLY {11.2).

'hLITERAL a constant appearing as the address part of an instruction (5, 4)

LOAD- AND- (}O a mode of operation in which a SIR program is assembled into

‘the computer store for immediate use. cf. NON LOAD-AND-GO (11.1, 12.1),

LOADER a tape read in by the initial instructions, «s poneled ab
e el @g, A-PASS Siw Blncrngy bages.

LOCAL IDENTIFIER an IDENTIFIER which retains its meaning only inside
the block in which it is declaved (4. 1).

NON I.OAD AND GO a mode of operation in which a SIR program is translated
to a RELOCATABLE BINARY TAPE (11.2, lz.1),

OPTION {(MN} a DIRECTIVE to the ASSEMBLER which enables the programmer
- to vary the way in which the assembler operates (Chap. 11).

PATCH { ‘?‘N) a DIRECTIVE used fo correct or control the placing of a SIR
program. It instructs the assembler to store program in location N onwards
(10.1).

PERCENT SIGN(%) the end of program symbol. On reading it the ASSEMBLER
locates constants and checks for undeclared identifiers and then waits (9. 2).

PROGRAM a sequence of BLOCKS terminated by a PERCENT SIGN.

PSEUDO INSTRUCTION an instruction not intended to be obeyed. It is used as,

for exarnple, a constant, If is wriften in an identical form to other instructions

(6. 4).
QUASI-INSTRUCTION a literal address in the form of an instruction (5, 4. 1),
RELOCATABLE BINARY (RLB) TAPE a special tape holding a SIR program

which is output in NON LOAD AND GO assembly (12. 1, 12.2).
Also callad en (NTEUMEHATE tope.

: -gj&zm.if ’ _.5@5. %Mf-?t}:-ﬁ‘ . (i.vu Mj : _vﬁ?. -f-ﬁsﬁm}%w»}‘ :

i

'. R}LSTOR (%) a,DT L*’“‘Ti"fm which cancels the effect of a PATCH or series
'of PATGH}SS b;r resmrmg the placmg address to its Omgmel value (10 i)

bads

'STPARATOR a Spacegor new line, }Lt is used to separate different SIR

elements, Com be confiees & O, o .

SIX-BIT INTERNAL CODIE the code in which the ASSEMBLER stores
characters three to a location. See code table in (1. 5).

S}{}}D(> N) a DIRECTIVE, normally used to reserve work space, which

- instructs the assembler to leave the next N store locations unaltered (7).

ST@RE CPOINTER ® ‘3«:2 CuRRENT PLAGNG Panesls

SUB GLOBAL IDENTIFIER an TDI‘NTII* IER having the same mcanmg in

~several BLOCKS (4, 1), .

TITLE o C(OMEFENT ob tg’\ﬂ. Shodd of O {3-5»{_‘,@ o @2LOCK
enclosed bl o double b encka b & ad o Sw\ﬁhz Bepckek)
5;:0\- !:&J ¢ urpuse o8 it &\&'&w&ﬁ [+ ‘”:n{;:%m PATAL. ey Lin t:'j%: (Chgf . g)

1.3 Elements of SIR Programs

The following basic elements may occur in a SIR

program, and must be separated from each other by at least one separator,

Words - - Labels

Patches, Roskores, Global Identifier Lists

Skips _. Stop Codes

Options Percent symbols

Comments A Trigger, ’

See references in 1, 2 for details of these elements.

1.4 'New line' sequence

The SIR assemblers rcecl one line of source text at
a time into a read buffer. Every new line should be followed by several

_ blanks to simplify future editing of the tape. (The omission of these

blanks is not an error), To this end edit programs
are auaiinblse +o automatically insert blanks after each new
lineq

Note tlob tfhese blosmks are €SSeutiag of
sb;g_c:m ci«ovmd;_eu are . Nt ETALE: " C |

On G005 :;.@cﬁwm mi}aﬁ’ m,ﬁaumﬁ, sy ?V,ﬁf:i‘ﬁ’rﬁi"{,;:, (,;g?» gi,

o e B : : : .
charccked, Camioge ethven & L feade SIR eoted the

Nt

W

1.5 Six bit internal code.

bbb covde ' Lok code :
Chasmclae Chustcog bog e
l Crekwd Dk Cokaf _

. o0 &) Spoen 32 49 N grave
i 01 : Hrwolivsn, a3 41
oz | owm 34 42

i o

0
1

2

5 03 1 ¢ 25 43
X

5

6

04 i & 3B 44

o5 | % 37 45

: _ 05 I 38 46
7T 0T | 4 eente 38 47
8 A I B 40 50
9 : 11 :) ' 41 51
: ES

iR

v T ST B B @ Jiv i

e
oy

12 4z 52
11 13 i 43 53

1?0 14 L, . 44 54

13 o - 45 55

4 : 18 i 46 56

15 17 f a7 57

48 - 60

49 61

50 62

51 63

52 64

53 85

54 66 |

58 67

&5 70

57 4

06 a2 58 72

27 33 50 73|

2% ; 24 : : £0 74
20 | . 35 581 . 78

20 3R 62 78
21 a7 g2 77

0= 8 MR o~

~

i
}
i

#<d"‘amwr9’ﬂ;

16 20
17 21
18 922
i 23
20 24
21 25
22 26
23+ 97
24 30
a8 31

e

N o

DO S G U S W

’n\ -

i

= et MmN nd b

A\

-
>

?

. s‘.,ﬂ

Nobes sbeak b2, L - coda..

I @ o e ?umaivﬁéﬁ 63 "'-'ﬂ.a_w Bima ' me

£

S v e s Cee ot
Carrione tebunn 4 Line Laed See purgenpi. | %,
2. On input no distinction is made between upper case and lower case letters. Letters are

always output in upper case,

5
o. O) :
49 Telnosda b:a{;@.%‘; ,8/, gm.c,.f_»x-t}e__’ amdh, M e e
%ﬁw B elan ot or $> Q%i) 2 :{,?; Lkrs.hﬂf"f} E&.& LY -2 G-Scd.x":r ‘:V\:‘j
verbical Lo chscocke "y ongh e 7 S"‘..’i‘“""“‘s““"!* o '
%ﬁ, Pwﬁcﬂ*&ﬂ&. g S |
. On AOU-Sedss code bmpes, Mgrwe sy be punided

foly Q»";‘t@‘p&—f A & OB, ot
3 @,

!
i_‘ T oo\, amal o guF i

é‘g Ry b, V‘v’\'\ﬁ-}w"v&fﬁ‘w ar

Dt b, pvwn eDusd, oot 2

[

5. e gkl (D) Tamizotal bab,
wed e SR mpes, and v bedid as §),

€. THRs L-bk SIR Tebenad wste B Simply
reloked, Lo "A.CD. Tatenod Coda, U2 g4q0
dasonbed elsewstast,

5a.

~entered. into consecutive

Chapter 2: WORDS

Words are the basic elements of 2 SIR program. After

.asscembly each SIR word occupies one store location in the computer.
Words can be written in two forms:i-

(i) constants e.g. +304
-, 2667
(i1} instructions e.g. 15 2048

/2 CAT+10

* All words must be followed by a separator. Words are

in the SIR program.

rule is when it receives an order to the contrary in a directive {patch,
skip, or option).

-5

store locations in the order that they appear
The only time that the assembler does not obey this

wgE

o
£t

" Chapter 3: BLOCKS

_ Every SIR program consists of one or more blocks. Each
Pblock is divided into two parts:-) '

(i) A Global Identifier List which is enclosed by square
brackets [4. This part of the block may only contain
identifiers and separators.

(:_Ei) A Ceode Body which follows the Global Identifier List
' of the same block, and which is terminated cither by the
[symbol at the start of the next block, or by the end of
program symbol (%),

The significance of these terms is explained in the next

chapter,
The last instruction capable of being obeyed in each block must
be an unconditional jump {e, g. the dynamic stop 8;40 explained in 5. 2{i) below).
It will usually be followed by labelled constants and work space,
The effect of trickling out of the end of a block is undefined.
B Example
[PRINT INT FRAG) Global Identifier List)
PRINT >| } :
i INT 5 FRAC
“cr L Code - block 1
0 PRINT body
/8 2
wsp > B 4
[IiNT] '
' £b10ck2
N. B, The Global Identifier List may be omitted at the head of a one-block

program, but if it is omitted block relative addresses (see 5, 2(ii))
may not be used.

The wie of hitles GHefore each Lloek (Ch ber 0) P .
¢ Sheraf
{NELOTE :.-'.:ux:f.‘.fwéz.. a‘“ 1?’\:1

Chapter 4: IDENTIFIERS - B

An identifier is a name invented by the progrémmer which
is a substitute for an address. Any combination of letters .A~7Z and digits
0-9 is acceptable as an identificr, provided that the identifier starts with
a letter. ‘

e. g.
A
HOUR
ThZ
* MULTIP LE

are acceptable identifiers

32BIT are starts with a digit
BL{BATI) not parentheses ‘
T 52 acceptable space -
B-LINE because hyphen

L

Identifiers are distinguished from each other by their
first six characters. Thus no distinction is made between FLIGHT,
FLIGHTI, FLIGHT2 and FLIGHTPATH.

Since no distinction is made between upper and lower
case letters the identifiers FLIGHT, flight, fLiGhT and Flight are
treated as identical. Programmers are strongly advised to use ugper
case exclusively when writing programs, excast for comnen.

Identifiecrs are declared by being used as labels.

" Consequently every identifier must be used as a label once and only

once within its range of validity.

4,1 Global and Sub—GIobal Identifiers. k
4,1.1 Global Identifiers.

Global Identifiers are the links between
the different blocks of a program. They must be listed in the Global
Identifier Lists at the head of the block in which they are declared.and
at the heads of every other block in which they are to be valid. One or
more separators must follow each identifier in a Global Identifier List,
and only identifiers separators and the Sub-Global Identifier marker, 1t . ~,
may occur between the square brackets which enclose the list.

_ When an identifier is included in the Glohal
Identificr Lists of two or more blocks which are assembled together it
refers to 4 single address indicated by a label in one of these blocks (the
block in which it is declared). An identifier which is used globally in some
blocks may be used as a local identifier in any block in which it is not listed
as global. -

g

' 4.1.2 Sub-Global Identifiers.

If on its first occurrence in a Global ldentifier
Llst an identifier is immediately preceded by k) wr s it is treated ._as a Sub-Global -

‘ Id@nizilei

‘ Whereas a Global Identifier remains in the SIR™
dictionary after the end of program symbol % has been encountered and

permits communication between several programs that are in store together,

Sub-Global Identifiers are removed from the SIR dictionary when % is
encountered. '

The listing of an identifier as Global or Sub-
Global is determined by the first Global Identifier list in which it cccurs
and is valid for a complete program. An identifier cannotl be Global in some

‘blocks of a program and Sub-Global in others.

4,1.3 Examples. _
[MOUSE #HAMSTER WLION WOOLT]
MOUSE and WOOLF are Global Identifiers.
HAMSTER and L.ION are Sub-Global Identifiers,

4,2 Iocal Identifiers,

' Identifiers which are neither Global nor Sub-Global are
Local, Local identifiers have no meaning outside the block in which they are
declared. ‘

_ The same name may represent a Global or Sub-Global
Identifier in some blocks and several different Local Identifiers in other blocks
and be undefined elsewhere (see 4. 5).

4.3 Labels and Declaratic;ns.

Each Local Identifier is declared by being used once and
only once as a label in the block for which it is valid.

Similarly each Global or Sub-Global Identifier is declared
by being used once and only once as a label in exactly one of the blocks for
which it is valid.

IL.abels are followed by one or more separators, and
refer to the store location into which the word following the label is to be
assembled.

e. g. OUTPUT 15 6144
AREA -23378

*] FASS. IR Qmﬂ S PREE B8IR hueats guwi“&%ﬂ:;}%ﬁa—%
evtidficrs as %/ﬂlw}f’

_ A location may . be 1abelled by several identifiers with ‘
'onc or more separators belween thc{m They need not be all on one line.

e. g, 8 REPEAT
BEGIN GO START
ENTRY
4 FLAG

Agsume that the instruction 8 REPEAT is assembled

in location 2300. "Then BEGIN, GO, START, ENTRY all refer to location
2301, I, however, 8 REPEAT was assembled in 2336, then BEGIN, GO,
START, ENTRY would refer to location 233?, into which the instruction
4 FL,AG would be assembled,

to as CONTINUE.

4.4
(i)

(ii)

(iii)
(iv)

An absolute address may be labelled. Such a label

is written thus: CONTINUE=9. This would allow location 9 to be referred

Example {see Figure 2).

Programs are named after the Global or Sub-Gleobal
identifier that labels their first instruction,

Blocks are naﬁled after the Global or Sub-Global
identifier that labels their first instruction,

APPLE is Global in both programs.

PEAR is Sub-Global in program APPLE and another
PEAR is Sub-Global in program PLUM.

APRICOT is Global in both programs and another
APRICOT is Local to block PEAR of APPLE,

ORANGE is Local to block APPLE of APPLE.

PLUM is Sub-Global in program APPLE and another
PLUM is the name of the second program.,

PRUNE and END are Local in block PEAR of PLUM.

A third program could refer to the Global Identifiers
APPLE, APRICOT and PLUM,

The example is a nonsense prograni.

[APPLE *PEAR APRICOT }

~ ~
S ARPLE 1D T APRICOT
ORANGE 222192 S o blc_;:}: program
(, 7 PEAR - APPLE
8 ORANGE APPLE
[PEAR APPLE '"PLUM])
PEAR 10 APRICOT =
4 APRICOT | block
9 PLUM PEAR
. 6 ADPLE
'”'" APRICOT +0 §
[PLUM APRICOT PEAR] L
PLUM 8 PEAR block
APRICOT >100 PLUM |
_
[PLUM APRICOT YPEAR]) 7
PLUM==5095
“fPLUM . [block
0 APRICOT : PLUM ,
10 17 ' program
8 PEAR J " PLUM
[PEAR APPLE])
. PEAR 10 PRUNE
- 4 PRUNE | block
' N 7 APPLE PEAR
END 8 END '
PRUNE -5 J J
%

11

'-_Chapt_e N H INS TRU CTIONS

. Words written in thelform of instructions are introduced by
a. / {B-line) or a digit. Each wond comprises two parts, a funct:\on and an
'addlcss, separatcd by one or more ‘ScpaldiOIS ' '

The functions consists of a decimal integer bhetween 0 and
15 representing corresponding functions and 2 / symbol immediately
preceding the integer if B-modification is desired.

The Address part of an instruction can be written in four
different ways; Absolute, Relative, Identified or Literal. Itis assernbled
as an integer in the range 0-8191 and is interpreted at run-time as relative
to the start of the store module in x\}hich the instruction is.placed.

References to locamono in other store modules are made
by means of B-lined instructions. '

5.1 Absolui‘e‘ Addresses.

An absolute address is an unsigned integer not greater
than 8191, and it refers to the computer store location with that integer as
its address. In functions 14 and 15, however, the absolute address gives
further specification of the function by the usual conventions.)

Examples
4 8180 load the accumulator with the
contents of location 8180

15 6144 punch {the least significant 8 bits of)
the contents of the accumulator

5.2 Relative Addresses.

(The relative addresses must not be outside the range
0-8191). Relative Addresses are of two kinds:-

(i) Location Relative Address consisting of a semicolon
followed by a signed integer. This address refers
to a location, the address of which, is the sum of the
address of the location in which the current instruction
is being assembled, plus the signed integer.

e.g. 7 ;+3 means "jurmnp three locations forward if zero"

5 ;=1 means ''store in the previous location'!
8 ;40 means a dynamic stop.

Note that 8 ;0 is not a permissible instruction.

. g™

b

1

{(ii) Block Relative Addresses consisting of an unsigned
integer not greater than 8191 followed by a semicolon.
This address refers to a location with address equal
to the sum of the unsigned integer and the address of the
first location of the current block.

e.g. [MASS]
' +336
4 MASS
5 304

If 4336 is assembled in location 3000 then 5 30; is
assembled as 5 3030, This dadlly s povided for
Cﬂnﬂ?li?hdve\& wdi% o oasiie, Co S {a {ggﬂ" Ouf._ﬂu.;‘

5.3 Identified Addresses.

An identified Address consists of an identificr alone oy |
followcd by a signed integer. An identified address is introduced by a letter.
The assembler replaces the identified address by the sum of the address of
the unique location labelled by the idertifier, plus the signed integer. The
signed integer is called an increment even if it is negative. Thus, in
Example 1, the instructions 5 CAT+10 and 4 CAT- 3 are both incremented
mstructmns with increments +10 and - 3 respectively.

An identified address may be used in the text before
the identifier to which it refers has been declared, i.e. has appeared as a
label.

Although an incremented identifier may be referred to
before it has been declared, such references greatly increase the amount of
workspace required by the SIR"assembler itself, Consequently, if there is
a block of global work space it should be declared early in the program and,
arrays of local workspace should be declared near the start of the block in
which they occur. This has been done in Example 2.

Example 1
CAT 4 WS2

4 FLAG
7 ERROR
4 CAT
E CAT+10
4 CAT-3

I 4 WS2 is assembled in location 5600 then
4 CAT is assembled as 4 5500
5 CAT+10 is assembled as 5 5610
4 CAT-3 1is assembled as 4 5597

. eass ol
' 13

Yt
-~

Example 2
[MXMULT]
8 MYXMULT
MATRIX > 400 (COMMENT THIS IS A SKIP)
+0
MYXMULT 4 WS1
4 MATRIXA265
If 8 I‘.-,’IKI\,{UL’.'F is assembled in location 3072 then 4 MATRIX+265 is
assembled as 4 3338 (3338 = 3072+1+265). The use of skips is explained
in Chapter 1. ' :

e

‘5.4 Literal Addresses.

literal addresses arce introduced by + -, =, &, or £.
They are used to ‘make it easicr to write instructions which operate on
constants, Instead of putting in the address part of the instruction an
identifier which labels the constant at some other point in the program

e.g. TEN +10

the programmer may put the constant itself into the adure s part of the
instruction;

e. g. 4 +10
The assembler makes a special note of this, On

reading the end of program symbol % (see 9. 2) it allocates a store location b
in which it places the constant and inserts the address of this location in all the

~instructions which use it

There are four types of literals, corresponding to
the four different possible types of constants.

(i) integers and fractions these have exactly the
(ii} octal groups same form as the
(iii) alphanumeric groups corresponding constants.

e.g. 4-.26067 6 &7777
C 2 4360 4 £E 3%

(iv} quasi-instructions {see below)

5.4.1 Qua si- ms‘tructmns

Qua31 1nstruct10n hterals dlfmr in two I‘bbpeCtS

oo

_ from pseudo instruction constants.

{i}) every quasi-instruction is introduced by an =
sign which immediately precedes the function
bits or the solidus indicating B modification
if this is present, '

(ii) the address part of a quasi-instruction must
be in absolute form - relative, identified or
literal addresses are given as errors {evror

£0)
.Examples 4 =8 0
4 =f00 i, e, zero accumulator except for 1 in sign bit.
é =15 8191 i.e. make sign bit zero.®

L_ ot Spaca @:-Au,teﬂ s reconumeedad e,

Note: L:xteral addrcss:cs may only be used with functions 0, 1, 2, 4, 6,
12, 13. If an attempt is made to use a literal address with any
other function the error message EL will be displayed.

?{i o t {j\. ! e It n.fLu. ' ’
This i Lo prtbalogically wnflen 6 2899999 (e Chag. 6.2)

_15

- Chapter 6 _(;O’\TSTANTS _ :

’There are foul types of constants a.llowed in SIR:

(3,) Int_egers and Fractions
(2) Octal Groups

(3) - Alphanumeric Groups
{4) Pseudo-Instructions,

All constants must be followed by a separator.

s
6.1 . Integers and Fractions.

*

Aninteger or fraction is introduced by a + or - sign.
If the + or - sign is immediately followed by an integer, then the constant
is stored as a binary integer.

e.g. +14 stored as 000 000 000 000 001 110
~64 stored as 111 111 111 111 000G €00 |

Integers must be in the range - 131, 071 to +131, 071 inclusive. (- 131,072
may be written as- the octal group &400_000)

If the + or - mgn is 1mmed1ately followed by a decimal pomt (.).follo;ved
by an integer, the constant is stored as a binary fraction.

e.g. +.375 stoved as 001 100 000 0G0 000 000
-.5 stored as 110 000 CO0 COC 000 000

%

(The ‘fz action' -1 can be written in the same way as the 1nteger -131072)
Fractions may contain up to six digits,

6.2 Octal Groups.

Octal Groups are introduced by a '&’ sign. An
18-bit word can be divided into 6 groups of 3 bits, each being
equivalent to a digit from 0 to 7. Thus a constant can be written as a
group of 6 octal digits, which immediately follow the ‘&' sign,

e.g. &312705is equivalent to 011 001 010 111 000 101
Octal groups of less than 6 digits can occur, in which case they are right-

hand justified {i. e. &42 means the same as &000042).

[

£ e § e 3
* MRCagaea Ty B
o s e S En
T P It S
3 mM&) ol WO
r E

: ;
o
. \r‘«xw

s

6.3 Mphanumcrlc Groups. :

Alphanunlerzc groups are 1nf.1‘oduced by a £ 51gn, ‘Wthh
is follcwed by Lp to three alphanumeric characters. These.are packed, from
~left to wight, into the store location in the 6-bit SIR internal code. All
characters 1ncludcd in the code table can be stored except that

e e

(i) % cannot be included, {see 10.2}

(ii) the alphanumeric group is considered as complete
if a new line is encouniered before. Lhree characters
"have been read after the £ sign. In this case the
group is left-hand justified (1. e. the remaining
characters are considéred to have code 0, the
code for a space). The new line is NOT considered
as one of the characters of the group, but instead
acts as any ordinary separator.

‘(3??‘) Spaces, however, when occurring in the three
characters following a £ sign, are treated like
any other character.

(i\!‘) Tk Can mﬁf&m&ww Grovps bt
&S Y speecs.

s

(v) To enoble 18n oBoevmol cods o8 Cacwslina” be
Lo Skoredh (iﬂ&?xg.& Gi) aloowve)) e symbied
4+ alplaamorntact praves 15 Sheesd eg welen E04.

(Vf) .ﬁ is skoradd a1 pafes G103, crtntfone
Funcﬁ»‘mﬁl @i é‘, lf’2, o \.

The chief use of alphanumeric groups is for storing
characters which are to be punched out at some stage of the program. This’
can only be done if the program also contains a print routine and a table for,
conversion from internal to external code.

oh the cliavodne sw%;cu-hiMd waad bw

kg uk YR D Duborcad cads t/;?,./ RN 1 Le fooad wrnbed Cur

4 w«kwﬁ ohplaomeivatie QoviE

"Exé,mgle 8

CAlpha- Actual : Form placed in store
numberic octal -
group equivalent in octal alphanumeric
as written {4 4] equivalent
'&éviAN 55 41 56 55 41 56 M_AN
| & space=new line || 00 35 s 00 35 00 space = space

(xx indicates an unspeciiied character)

6.4 Pseudo-Instructions.

These take the form of instructions but are used as
constants, They are identical in form to ordinary instructions.

e.g. /0 0 can be used to represent the integer - 131, 072

Similarly, constants can be obeyed as instructions.
The intentional use of constants in this manner is frequently described as
pathological programming and is to be deprecated. Failure to terminate
an instruction sequence with an unconditional jump as described in Chapter
3 is liable to result in this unwanted effect.

L -._:..'i‘&:'.

‘Chapter 7: SKIPS

: A’ skip >, indicates that a number of store locations are to be

left unaltered before the assembler continues {illing the store with SIR words.
The number of locations which are to be left unchanged is indicated by an
optional + sign and an integer which immediately {follows the > sign.

For example, if the iollowing piece of S5IR program occurred.

+133 -
> 15

s 4 8180
5 COUNT

“« ¢ 88 an

and the word +133 was entered into location 5000 in the computer store, the

skip » ‘15 indicates that the next word, the instruction 4 8180, is to be assembled
not in location 5001 but in location 5016, the instruction 5 COUNT is then
assembled in location 5017 and so on.

The chief use of skips is to reserve locations for work space
without assigning any values to them. '

7.1 Labelled Skips.

Locations left unchanged by skips may be labelled in the

game way as locations occupied by words.
e.g. " 8§ ERROR
> 4
ALPHA > 10
MATRIX > 400
BETA > 10
In this case if 8 ERROR is assernbled in location 4000,

ALPHA refers to location 4005, MATRIX to location 4015, BETA to location
4415,

Notes: 1. The last word of the 10-word vector labelled ALPHA i3

addressed as ALPHA+9. Similarly for MATRIX and BETA.
___________ 2. Addresses outside the range indicated in note 1 may, of

coursc be referred to by incremented instructions. Thus ALPHA+1],
MATRIX+! and BETA-399 are alternative ways of referring to the
second location of the array MATRIX. However the increment
relative to ALPHA would have to be changed if the length of ALPHA
was changed and the incremsent relative to BETA would have to be
changed if the length of MATRIX was changed. ‘

Lo

. Chapter 9: END OF TAPE AND ENI OF PROGRAM SYMBOLS . . .

9.1 Endof tape symbol {halt code)

: A halt code punched on a tape causes the assembler to -
wait. Assembly can then be continued by re-entering at CONTINUE (sce
chap. 12) when the next tape is under the reader,

Halt codes are chiefly used:
(i) at the end of cach tape of a program punched in parts.
(ii} at the end of patches.

_ Frequently, when a program is being developed, each
block on a tape js terminated by a halt code and several inches of blank tape.

9.2 End of program symbol {%)

On reading a % symbol at the beginning of a line the
assembler displays a list of undeclared local and sub-global identifiers,
locates all the literals in consecutive locations immediately following the
program in the order in which they occurred in the program, displays a
list of undeclared global identifiers foliowed by a 'FIRST LAST' message,
indicating the store used by the program and waits. Further symbols on the
same line will be ignored buttheline must be terminated with a new-line
symbol in the usual way. A % symbol should be put:

(i) at the end of the last tape of a program in load-and-go

(ii) at the end of each section of a program which is to be
assembled as a separate relocatable binary tape in
non-load~and-go,

It will frequently be found convenient to end all tapes with
a halt code and to read the % symbol from the on-line teleprinter or from a
special tape comprising the character sequencsa: € A @) @ ;,

21

£

Chapter 8: COMMENTS & TiTLES

: Comments are included ina program for the sole purpose of
. making the print- up of the bProgram cagier to understand,

; A string of characters botween { ang
is ignored by SIR, A
'c_cm'meﬂt may be inserted anywhere in a SIR
Identifier List. Comments must not, howev

) is a comument, and

brogram except in a Global
¢r, split any SIR element,

e€.g. the section of proExam:

: 9 ERROR?2 (NUMBER OVERFLOW ERROR.
_ ' INTEGER>131, 071)

is assembledias if it were!
9 ERROR?2

4 INT

5 wWs2

TL i Coect S:jrm’oa{ wside a commonk o F?‘"‘_‘“?te“” "(¢

s pvp&f\&.{fj o tecordd, of bﬁfﬂ Roodad,

e comment i
SR ovbe o Lohod Lt

€.3. ((SQW\”RE Root SUBROUTINE)
'1,5 & M{ﬁ.-

Tikles ovmd com rpaat§

f"\.’z,:j O‘nlﬁ wh.'tﬂ;a/- c{-\a,m,c!;()ﬁ o Hae 6-

bt codn
(sea 1.5) s e, o thuse o ed Y bl ot e vsed, o
l.&a& (. ey be e FD« puepers Gi%cs:\l;:..d we tPa P'{ﬁ%(;v‘ der'?‘{“
NG b poBieaton H0nb o oy brackel covnt” s ot ol

A kbie sheemadd be lseatl, pwxm&{m omd Collowsed bxj o @) P |
showld eontoion ra (DY o :

Ustreenze (otiats,

Q0

Wi

Chapter 10: SPECIAL FACILITIES -
. 16,1 Patch and Restore

A patch is a directive to the SIR assemb*er to ,.;fop

placing instructions in consecutive store locations and to place them

consccutively irom the location indicated by the patch. At the end of a

sequence of patches. compilation of the main program can be continued by
the dlrectlve restore.,

It is the responsibility of the user of these facilities

to ensure that no location, whose contents w1ll be changed by the later
~action of the SIR Assembler, is altered. {Such locations normally contain

in their address. parts inforrnation used by SIR, changing this information

~may lead to the corruption of other parts of the program)., Any location

containing an instruction which refers to a currently unplacuu literal or : ?3
identifier falls into this clascz ~

10.1.1 Patch.

APATCH is written
-tA

where A is a constant or any currently located address. Itseffectcanbe formally
defined as

if CPAR = -1 then CPAR:=CPA

then or otherwise CPA:=A .

' ¥

where s

CPA is the Current Placing Address, i.e. the
address in which SIR will place the next item, and

CPAR is a location used to hold a copy of the CPA
when inside a Patch. (CPAR is initially set to -1 by the assembler).
In non-load-and-go mode a patch may be made to an unlocated label
if it is the first thing in the program, (apart from global lists and
comments} No other patches, or 'Restores' ($) are allowed in the _
program. The label must be located when loading the RLB tape.

10.1.2 Restore _

The symbol $§ written by itself on a new line

causes assembly to continue {rom the location which would have been used
but for the intervention of a Patch or Patches., Its effect can be formally
defined as _

if CPAR ¢ -1 then CPA:=CPAR - }

.-t_h_en. or otherwise CF_A_Q = "'i - o a8

: - o Thc lcader should work ouf for himself why
LB Patch 'read in aﬁei the end of apr Ggram, which uses htcralb must end

5

10,2 He Tﬁ@er 5”’«“% e -PASS SR

;l PeSS QIR mwﬂ e hﬁm %@L&i«\i ﬁﬁ*‘-é’wwa:z%é
M %M’%WW 5. 9. "o evalie {)v@'ﬁﬁwﬁxg w% %Jaxs TR %afu
hredod . coth. fef835 s fm o mmmz.,a} ,%M ;i; 5%5, S56R., [-PASS
SR new accafly e ‘bﬂﬁ%w ' %%Wi “L . o |

T addiita ok oe@id. b %Mﬁzw& Tt

ooeerd v e vosmea W € ;.ng -
| o prone erevriad %.w_ ~PASS S8, W rsencitn
| Ao . m;yw?\gﬂmé -%v! Ly, ._f . Yy w v, Han tboorad Prgpe

oy . . Gfm@”mé s S&&vm‘g ok (LY vesersdingd

: LY R R '!a"‘j mﬂ‘v‘f
-PASS SI& ak BecoTe , vie, & 1TH43.

gy ”@HL’-&.E’*& o 0"&-_'_-5 antadodis G Lomd wond - L

vaodiey, e R.L.E meds LY s @W«,ﬁ.

. %_:-:(;i;i_ap:t_;;;{_;_..__'111 OPTIONS Fo{«: !#ﬁ?s sggz

Optmns are used to altm ihe way in’ w}uciﬂ the assembler

: ':.'._'operates Traey are znirodhced by an astems (1‘} fcllowcd by an. Gptz{mal _
4 sipn and an‘integer. The last seven bits of the mtcger are cxamined and

; varlatmns ale made in the operatlon of th(, assembler ps follows ..." o

1o :_'.Bit_ R :Meaning"if ""bit."'; ha‘s -thé value e : ﬁ'-':- : Alelablhty
e S FU R S R Go Load Bl Check :
S o - & G : PO
1 | . display labels | don'tdisplaylabels | Qorl | @ S
20 loadaeand go "1 nonload and go NSO NEEE B 0
(T ST B "cl-e"zit?ﬂié store. | take mo action - . |0 or la R R I R
16 - a-«“fwm&iza fﬁ'ﬂﬂ % | continue at NEXT O or 1 | 0 - N R
132 | setdictionary. -| set dictionary 1 0ori 0 0
bel_ow program below assembler ' '
64 - perform checks | compile program - 0 0 : 1
o only. : ’ n

: : ~When assembly is started at S'I‘ART ‘an.option. of # 3 is
.automatlcally assumed. ‘This option, like all other 0ptions is cancelled
when the next option is read by the assembler. It should be noted that

“the 1, 2 and 64 bits enforce conditions that hold continuously, ‘whereas

the 4, :16 and 32 bits direct the assembler to do one operation at the time
that the option is encountered.

It is not possible to enforce all combinations of the options
indicated by the six bits. The 2 bit is examined {first to decide whether
the assembly is operating in the load-and-go or non load-and-go modes,
and the other bits are then examined where appropriate,

The difference between load-and-go and non load- and-go

. programs, and the action of the binary loader, are explained more fully

_in the computer store ready for triggering.

in -chapter 12,

11.1 load-and-CGo mode

When the 2 bit in an option has value one, the assembler
operates in the load-and-go mode, i.e., it assembles the source program

Al the other options
are avallablc, and the blts are examined in the following order:

25

| . : (1) 16 b:t.’t (c:cmhnue, at 21)

_If the. 16 Dbit = 1 the as sembiy wxll contmue at :
_10catmn %‘ : s SRR ' :

(i) 4bit (cmdl the Store) PRI

B 'If the 4 bl’L = 1 the &ssamblez cleaxa, ail 1ocatmns
- -irom thc Gne where ‘i]oc Peht word is to be ascemiﬁed
to jusi bcfore the SIR asbemblcl 1iself '

(111} 32 bJ_t (set dictlonary below p10g1 am)

o Th(, Dmilonary is the area of siore thre ihc
. 'aSscn‘lblcl Jists all. the Ldentlfxcls and lltelczle it
{inds. tis: nﬁrmdlly built up. 3ust helow the . SIR
assembler itself, but if the 32 it = =1, it 1s bmli
; dow;nvardu fr om the locataon pI‘GLCdll’iU the om
‘where tha assembler is. about to put’ the next: word

) Thm option! may be used when storing a prog1am in the }ugh end
of store It may not be used in the ‘same option 1nteger as’ R
‘bit 4. When option bit 32 is set = 1'the test which guards aga:mst

i -progra:m c}verwnmng dlcnonary or the Assembler 1tse1£ is removed

C(iv) 1 bzt (DzsPlay chbels)

I ‘the 1 bit = 1, whc,never the A?oe‘”f}blﬂl fmdb a h

. labE}, lt. FUAUL\&'? -Ltﬁ [WL&M &:D&ei’:g ke, te'%
cekad oedhe dacivead addienas of M -Qa;\m.i:.\m\ to
elodds s Wqﬁ-ﬁ« i-&g-&«r* Lx)ca-_ﬂ. ﬁw&&q o gad

mm.é_wi b
e o) & temiss @ gm Lo fad
w C;,i.a‘ao«.i& g:) fm e 5 ?cu&.i &-m bfﬁ ﬂ

T‘/&Qﬁ G, f&unw & e {ﬁ\g i.‘,:t.ﬁ-%g/"" Lm’i'; VW 10%* Mé%%
tods, imesprdiue 0 ot e 4olib. Bm Eaclen. riaaolong
s -‘wn&w it o powwe Bloote W dbeenlde,

Note that, if error indications occur, they will
appear among the labels. '

11.2 Non Load~ and-Go mode.

When the 2 bit has value zero, programs are

assembled in the non load-and-go mode, i.e. they are not assembled in
the store but are punched out in a special binary loader code and can be

entered into the store by means of e, iz @y, 8. loosder
i—PASS S1g,

Tinn pa [T v;:z«-,«g ap bere Gaa rnolty nele Mi .

R

g

11. 3 Check mode.

When bit 64 has the value 1 and bit 2 has the value 0
a program will be scanned for errors without actually being assembled.

The only option available in this mode is 'dizplay
labels'. The effect of requiring other options is undefined.

(i} 2 bit {Main mode indicator)

This bit must be zero

{(ii) 1 bit (Display labels)

This bit has the same effect as in the load-and- go mode,
11.4 {igss of non load-and-go assembly

- Although it is usually more convenient to assemble
programs in the load-and-go mode, non - load, morh-go wvould e

nsed e tha g@ﬁ%ﬁwiﬁfﬁ crndat g btmgag =

{i) S)w“'wtﬁ o &ﬁuﬁ@fwﬂ- &% o progcama.

.
LE S AT

. F&-fgé’z ot &% rOYEa, subpoalineg or

sebire S p ¢ S
voehnine s iz SubrdBies amd oubices

i ;»“Ai\gf’é
e %, . .
b coeuzidnd fo £Lg (Lm tee sﬂnx.-;,éi;m a:'r._{'j@) %‘w ,,{1;: ,33
Yy " Le ®y s
leQ-‘é “"&‘% Gvsir B e froqrass Ut b e

o et
loodad G telocode forva, Thvas sayay & 5

WE fiRoggaent

RLB tapes are much smaller than SIR tapes and are
read in at six times the speed.

) b o g .
ke ok oy mx{}ighﬁm i:%:‘:{f F v &j v ga L{%
ey §Sudsvoruliots gagd VS Gomadd b

cvveled 0 puce busauy by 2-FAS gip
“ i

[Il] + : £
(i 13 ﬁ‘é’ e maoaal o U’%{ﬁf? o it“ﬂmq CLrm b -~
& £ : o
- ? 53 f:aw,mi{ = CaFribl et tam fi f & ‘{’j“_‘? &‘gﬁé,

3 ’;“» M " :{:s
a0 ALGoL iéw Geny dogecdsed ’iﬁﬁ%iir*w?{xﬁ?ﬁ.

'L@J

11.5 Summary and Exalnpl'e.s of _Opiicns LF
1 Mode .
1 Load-and-Go Translate to Check Effect
' ' paper tape P
2 0 64 Basic mode
3 , ' - 1 Display Labels
4 - - Clear store ,i
i6 - - - Start placing program at £
32 - - Set Dictionary below program

Add together the numbers in the appropriate column
and precede the sum by an asterisk. e.g.

19

% 0
® 65

Load-and- Go, start placing program at
location @, display labels.
Translate to paper tape.

Checking mode, display labels.

z-‘m')
S

Chapter 12 ASSEMBLY AND LOADING OF SIR '}”‘A‘?ES WITH I~PARSS gio.
| 1? 1 Awacrnbly of SIR Tapes. ' Lo

“?“M: msmmhw H-PASS SR 2’&{5?‘%% &wxﬁ%‘“" 'is read in by the initial instx uc:tlons, s f‘ifﬁﬁ 3
AL tdpes wiiften in SIR ‘can then be read in by enter ing the aauernbier atone . U
' 6’5 e mv »wing st‘ntlng 'ulc'i:ne sses; e Mﬁé«*”f— »3 ' ' '

-Aaa-res's T Name Effect
&j‘#’éﬁ-{g START Cancel all existing dictionaries
| and begin a.ssembly, %»Z.s.}mg |
| Ccram i _ .Qf-ot:‘ e Mmtﬂx&aﬁﬁj

3 Aot 55% Telacsela
120 "Telecasda :

&i344) CONTINUE Assemble, mmaintaining current

oTTEL dictionaries

12.1.1 Load-and-Go Mode.

- In this mode programs are assembled in the
store ready for immediate running, During assembly appropriate error
" indications and, if required by the options, a label list are displayed.

: When % is displayed the assembler locates
literals and displays a list of unlocated identifiers followed by

FIRST CLAST
al a2

V«’hé?&é‘ai 'is-fhé Jowest and a2 is the highesi address to which' cods haw
besn placcd since an entry was last made at START. e

12.1.2 DNon lioad-and-Go Mode.

In this mode programs are output to paper

.- tape in relocatable binary (RLB) form. If required by the opticns they are

- pr eceded by a loader, The assembler forms and stores a checksum,
When % is read this checksum is output followed by fifteen

blanks and a loader halt code. Any necessary EU messages

for global identifiers are then displayed. (EU messages are

explained in Chapter 13). These are not necessarily errors,

as the labels may be supplied by another relocatable binary

tape. They must be distinguished frormn EU messages for

missing local identifiers in the last block, which are displayed

before the loader halt code. If-any errors are detected during assembly,

punching of the relocatable binary tape ceases and compilation continues

in the Checking mode.

12.1. 3 Checking Mode.

In this mode error indications and,. if
required by the options a label list are displayed. No other output occurs.
- The only store space used is that occupied by the dictionaries. '

1 o laterediae " foven [

12. 2z Loading of Relocatable Binary Tapes.

R1.B tapes can be entered into the store at one of the following

"sta.rting a_ddresses} i Mods 2 («@%& . Wﬁﬁgﬁ%ﬁm 12,65

Address Name Effect

_ : START A Cancel the current existing dictionary
&19934 (. and read a relocatable binary tape.
435 3 Start placing it at location § unless it

begins with a PATCH to a different
starting address, gicieg
Crvoe waclicoBons ot Aedsed

B0~ Semba locode

4oy Tleroceda
V1436 START B Read a relocatable binary tape
maintaining the current dictionary.

. SIERY A,
BYHE3F | START C | As for 39, but CPA is not reset to &

OCTAEL

\ 6nce this has been done it is
not possible to assemble source tapes without reading in the assembler
again,

During loading, a list of global labels used and
their addresses is displayed. If any errors are detected an error
indication is displayed and the loader halts, but loading may be continued
by entering at START B to find further errors. The effect of an attempt
to run such a program is undefined. On reading a loader stop code
loading stops, the loader displays a list of global identifiers still to be
located preceding each identifier by 'FU'. It then displays a FIRST
LAST message as described in 12, 1.1 above with al referring to the
last entry at START A or START C. The checksum preceding a loader
stop code is checked against the checksum the loader has made whilst
loading.

Every RLB tape must have a loader stop code at
its end (i. e. the last source tape used in its production must end with

@ %@ Ol

a0,

12 3 Mixing of RLB tapgs and mnemonic t pes

It is possible to read vcvela,l mnemonic idpcs 111tc:> the

store using the assembler, and then to read several RLDB tapes in at
START B using the loader in the assembler, In this case all the tapes will

share the same dictionary and can communicate with each other via global
identifiers. This facility permits library subroutines to be stored as R1.B
tapes and a SIR program to use them without itseli having to be translated
to RLB form. Note that the last of the mmnemonic tapes must end with

' e line % new line e, ().

" 12.4 Loading programs into the high end of the store.

Programs read in load-and-go are entered into the
stcre immediately above tha last program read in, unless the 16 bit in
the options indicates that the program is to be stored in location ¥ onwards.
Programs can, if necessary, be directed into a specified part of the store
either by means of a patch at the start of the program or by use of the
tcontinue at %/ option followed by a skip, predarabls e lebler o auvid
b‘ﬂf"w e CM—Lﬂ ﬂ'r’t*j $;Jma,i’id.

»

12,5, Compabobiliby citls ecadtiar swss of -PASS SIE.

RL8. bupes rade wiwg "I-PASS SI& 2[efth may e Lowded
as e feelnew f2.2. miz;»ma Ands Mu«gm b, pesdar vesds 4.
(@‘L.&"i. trpms rosde %;g} 3218 ﬁf&(&{@ nch %{’%{«i Wil #F (-PASS Sk
pads foora seure-topes rot covbrinieg elpluscwadie geer(d
Aokienl eongt fou lur mode oF ungpdf)

3
e
12.8 Multiple Program Assembly
If two or more programs are to be used tdgethér Jmked by SIS S
_common global identifiers, and each program is termmated by %; the o
followmg rules. should be observed :
12.6.1 Load and Go Assembly
Assemble the first tape by entry at $TRET. Thistape may
have any load-and-go option. As semble all subsequent tapes by entry at fonTivua.
These tapes may include any load-and-go option (except options including the
32 bit). .
12.6.2 Assembly to paper tape (non-load-and-go)
(1) Assemble the first tape by entry at START The first
significant item on this tape must be the option *. ¢
T " No other options can occur on this tape. '
(2) If the program is continued on further tapes, assemble
these by entry at ConTuwe, until the % is reached. There __
must not be any opticns on these tapes. :
(3) To assemble the succeeding linked programs steps (1)~
and (2) must be repeated for each program.
______ (4) When loading the programs the first program may be
: loaded by entry at STARTA or STARTC.
(5) The succeeding programs must be loaded by entry to
STARTD. ‘ 3
=y
3R

g b4 B - i .E“
HR e e -1 ansnbf o iﬁ
T thes iw ob t.f,wum ckar

L fAREY Y o %«;wg ’aﬁ

- gy "
Em?? Tt x‘muﬁu«ﬁm. .

it

ks

program.)

Chapter 13: ERROR INDICATIONS
Error indications given during assembly.
The ioliowmg error-indications are displayed {i. e. output
to the teleprinter) during the assembly of SIR tapes whenecver the '
appropriate error is detected:-
Error Meaning N Effect in Load-and-Go Mode |
EO: Instruction Error
‘ (i) function > 15 One store location is left
(ii) address part of unfilled.
guasi-instruction not
absolute.
E>l: Contextual Ervor
Any impermissible sequence One store location is left
of characters not giving unfilled.
any other error indication
E2: Octal or Alphanumeric Error
(i) Too many characters in One store location is left
an octal or alphanumeric unfilled.
group.
(ii} character in octal I
group other than digits
0- 7.
5 3: Label declared Twice
Label found identical to a One store location is left
previous label in block unfilled.
where previous label is
still valid. }
E4: Global Identifier not
Beginning with Letter
Applies only to identifiers The program is corrupted
in a Global Identifier List. in an undefined manner.
J O H Store Full
Program is about to over- The Compiler waits,
write dictionary, or vice- Compilation can be continued,
versa. (This may be the A patch, skip, option or
result of a Patch error). obeyed instruction must be
(ES after % has been read read next. -
means that there is
insufficient room to locate
all the literals used in the

——

3y

Identifier has appeared but
never as a label. Given at
end of block for local
identifiers, or on reading
new line % new line for
global or sub-global

Kirror Mezmiﬂg'.” Eifect in Load~-and-Go Mode
Eb: Number Overflow
' (i) integer cutside range One stor¢ location is left
~131, 071 to +131, 071 unfilled
(ii)more than six digits
in fraction.
B7: Buffer Overflow
Over 120 charzcters in line One store location is left
of text {i.e. too many. unfilled.
for read bulfer),
w8 Illegal Character
(i) Misread or mispunched One store location is left
tape. unfilled.
(ii)character on tape having
no wnieracl code volue |
(113 Porb Brvoe
Irg: Stop Code not first
~Character on Line _
Characters other tharn blanks The Compiler waits.
or erases between new Compilation can be continued.
line! and stop code. One store location is left
unfilled.
EG: Global Label Error
An attempt has been made to Compilation continues.
redefine a global label as
sub-global.
El: Literal Error
A literal has been used with an One store location is left
instruction other than 0, 1, 2, unfilled.
4, 6, 12 or 13.
EP: Patch Error
A patch, or obeyed instruction, The Compiler waits.
refers to an unlocated address. | Compilation can be continued
A patch skip, option or
obeyed instruction must be
read next.
EU: Unlocated Tdentifier

Compilation continues

identifie rs.

33

13.1 Layout of 131 ror I‘{;dzcations and lhelr }foect on - v
Assambly
Each ervor mdlcatmn is pre ccdcd by 0 “erase d«mtms
Threc different types of layout are used for assembly error 111c716ai10na -
(i) T EU: EUis displayed on a new line, followed by the
identifier which has been detected as unlocated and
an ‘address’. If this ‘address® is 8191 the identifier
appears only in Global label lists,otherwise it is the
' address of the last reference to the identifier. The
assembley continues checking the identifiers in the
dictionary. ,
(ii) * E5, E9 and EP: ES5, E9 or EP is displayed on a B
new line followed by the bracket count (i, e. the d
number of '{'s found since the last START). Assembly
is halted but it may be restarted at CONTINUE,
(iii) En (211 others): En is digplayed on a new line
followed by the bracket count, and on the next line
is displayed the line of source text in which the
error was detected. The assembly continues with
the examination of the next line of text. !
In all ¢cases, output of relocatable binary tape ceases
if assembly is to paper tape, but error indications (and labels if requested)
continue to be displayed.
13.2 Examples of Assembly Error Indications.
E2 16 8 occurs in an octal group in block
PRINT 6 &800000 [16 b
EO 10 Missing separator giving rise to an
152048 impossible function in block 10,
t Note: EU displayed after % has been read is not necessarily an
erxvor indication., It may mean that a Global label, which belongs
to a program that has not yet been loaded, has been referred to.
S Nele: 2-7ASS SiR et 6 Rine of soume texh om Gindieg
ES or K9y parts ov adl o os Liae ey b }

[PPSR 2 s rebbisl

13 3 eror Tndwatmns given darmg Ioadmg mf rdccatublc
' bzn%ry ‘L’—tpgs.- ' : : : :

_ - The follmﬂlnw LrIor Jndzcahons m’ay Le glvcn durmg the
' .'_loadmn 1e10catable bmary tapesi- "o : -

CError Iildicatio_n_ o I :M{hm&ing '
| FA) Mis-read 01 o o __'two dzfi’el cni 1\1}1(?“18 of ﬂlcgdl
| FD): mispunched tape o COde..» on RLE iwoe G
FC: Label used twice 1 as for 3
F‘_E: Store overflow | as for 5
EE:FE Checksum failure: punched chechksum does not equal
' ' checksum added by loader.
FP Unallocated address error as for EP
FU: Unallocated label as for EU

- Note that:

(1) FC ie displayed when a tape with a label in it is entered
at START B when the same label has already occurred
in a previous tape of the same program {(the presence of
two identical labels on one tape would have already been
detected as an error during assembly).

(ii) FU indications will be displayed when a global identifier
' occurs in one tape and refers to a label on another tape
which has not yvet been entered. FU indications only
indicate errors, therefore, if they are given after all
the tapes of a program have been read in.

B !? Subh - mlsal,
(iii) Since all localiidentifiers are eliminated during assembly

of the RLE tape FC and FU refer to global identificrs.

No additional information is displayed for F errors except
that for FU errors the identifier which is unlocated is displayed on the same
line as the FUX All F errors halt the loader, but loading may be recontinued
at START B.

Komd o addis O %"‘MV‘ Cvmem,ﬂj to 1w
addoe§t ke CL @roovs,

Chapter

S is _put in location ANSWER.
and it will stop on the stop code.

14& EXAIVZ{"’LE OF A SIR 'PROC%RAM

: _ The follos wng short pi ag am adds up the absolmc va1ues of
“the ten 1n’cegelu in the block headed 'DATA' and stores the answer in
“location ANSWER. If; “however, the sum becomes too large to hold in one
'siore location the iaitez s OF are punched out on a new line and /15 8191+
‘The program tape is read in first at START
The data block

following the stop code,

ey

which can be on a separate tape if desired, is then read in at CONTINUE.
The program can then be triggered at location BEGIN, the absolute address
identified by being read off the label list which is produced as shown below:-

literals occupy locations

& BEGIN
2

e .. LOOP
OoFr
END
COUNT
SUM
(0 ANswewr

SO &S TATA

FIRST LAST
¢ 5

G

L
o

4
15

54

The block . DATA occupies locations 37 to 44 and the

lowest address.

%

~1

tevald be less paﬁfmj’,«y%{c.w& .

-7 to 52: the first literal being placed in the

s B

26

23

{{SIR PROGRAM EXAMPLE)

' [BEGINwDATA ANSWER] B e
BEGIN | -10. . (ENTRY ADDRESS)

' COUNT :

+0

S UM

LOOP . COUNT
4 DATA+10
2

i+2

+0

SUM
SUM
OF

0 COUNT
COUNT
LOOP
SUM
END

00 v D g st D U e I D0 D~ O

o~ OF -4 &ozz (PUNCH NEW LINE)
. | .15 6144
. ‘ 2123 (PUNCH 0)
: .15 6144
: 4 JALYA ' (P UNCH F)
- " 15 6l44
4 =/15 8191
END 5 - ANSWER
f o ' 8 i +0
» COUNT >1
b SUM >
ANSWER >
(HALT CODE)

[DATA]

DATA +65
+12
~-14
- 756
+602
-5
+56
+1
+0
~22

o/;

37

Las

.
"

i '}.é. E;

Note s

o?tmn *.Z43 means 1oad. and go, 13.51. la‘beis, cleas: the

"store and stari as semblf at %

(i)
{iii)

(iv)
(v)

(vi)
(vii)

(viii)

14.2

re}.atwe addresses have been used for short Jumpq and
zdentzfled addresses for longer jumps.

the identifiers here perform several different roles -
1.O0OP, END and OF denocte locations to be jumped to.
COUNT and SUM denote workspace

ANSWER denotes a location holding the result

BEGIN identifies the trigger address on the label list.

the ockal values, with paritﬁf of the characters to
be punched have been used; in a long program this
would be done using alphanumeric groups togethel
with a code table and print routine.

the program occupies locations £ to 44 and the six
literals used (- 10, +0, gozz &12% &124 and =/15 8191
occupy 10cat10ns-‘?:§ to 52 'I‘he location given under
LAST in the print-up is therefore 532.

thé halt code at the end of the first block is on the
line following the comment (HALT CODE).

% is preceded and followed by 'new line’.

BEGIN and ANSWER have been declared as Global
labels so that other programs can refer to them.
DATA is not wanted outside the program and has
consequently been declared as Sub-Global.

Liayout.

As separators can be inserted at will between the

elements of a SIR program, considerable variety of layout is possible.

It is recommended, however, that the layout used in the example be adopted.

Note that extra 'new lines' may be used to break the print up into convenient

portions.

#ln a20 Telecoda

3

R

CHmPTER 45

CHAPTER, 4!

STORE Useh

Gy {-pn55 ot

. } g
(-PASS SR, 243/, Biuw Mode 3°

as&ewiig&:vﬁ
skorea b&w Sé.- Q.D}

S60— Glbs.
geisp e f;‘isﬁ;

ke gy

Tha parks oF
Lesaatiorns
M&M—Qfé Frorvn,
Formo.

&ce u-i: %:1
me

LD C@%ﬁ‘ﬁﬁ
on {oe T o1
1%~ Lok

R AN

(LN

32 wu

€167 - 299

Loupbn tvd

-
ﬁﬁ—éi‘fv’é ¥

FOUO-R bt .
E.L &, b‘«e.fef% e Siabisag.

e O
& Ma..,}:; “ﬁ!?& ﬁ}"w —
'%«'»-‘. twﬁgnm 1,%.3.‘;3

3

+4
Y

(28

{T’fﬁ t«m/g EM

4o

19

e R.L.E,
m‘«dtw&b&fvﬁ

tried *aj:%

SubmfayY oF FRSE SR PwITEY ?mmm
Okl Baby b | Ackion Riofetncn,
& 14124 STAeTA qov
B 19%3s STHETH 920 |1 Aot b ‘2.5
19926 STARTE RL.8
Srwdzy | sieeTe S
& iu““*r’%f START oo, | Te Leosh
& V1% 41 START 980 3 Soves ‘2.1
219742 cortmae) Ufgen
& 143 4% ExECUTE m{,wm fmmmm; oz

A frm.a -»Qf:smﬁ:f;"#ﬁ"
o pvoyTIAA tfa éiai‘:%cv\afﬁ
gwﬂiu;u,g bovanrrie & 5

{: ¢
D e b B

G fvw&mzm

»:3 acwe't% Han Shoee

\-PASS Eiﬁ)

Thed Q&0 -Saiens

C&ﬁ-;a«.ﬁm_& elsesrlnre) 5:1}

m-rm{&r;m SHL
S

,,,,,

This VErsidne ad SR e

»Qﬁiou;wzﬂ RS GG 1o

‘%@M oribbon, Loc LB

(i,} o e,rz,a_»golua Ghe Sl

progoew to be cortftan.
e hiads oceupies \fixi:x.mﬂ,:j o enbire Q192 ~coped
store. . ?r'm%r’m%'\.s asserdolecd }5 4-PASS St@ et
Abrnited, v abouk 4000 in ﬁ’(&f.’:} O croeds (e Qwaﬁ_‘_ﬂ
“boge wods, o showk H600 wodit e RLE
Fvcﬁra.mi o535 enadslad, 4:;:} 2-PR88 <18 e &:’.ﬁz,u;ﬁ:}
ekl locokiony fiom 9 4o .

GiLs " Ve e paaiint

L ¥l ?’ii:;:,, A

(i) To eneble gp progmvar ds ha

wv&%@w chr- [¥5y3

(i) T produce o sl conbaal

v phitod prograae s op por ble o2
Sp aad R bhe lkgﬁﬂ!,é,f‘“.

‘abm@ Em?e, of Q.ﬂ:}
M;.E,cw-c:{f.;,v\ﬁ o_.}: ‘Z{«ﬁ,

?m&mm nob Clrn kit am)

Iﬁnva S MS cﬁ?f:im'\: er o (Qw w5l
g bae ii‘{&‘éﬁ‘ P efns . Lor - pasy

L 43 is mcm?vmsj& bj
2-P88S g, BUT EVERY “Tafs ruatk stent watfy
& frewbes N (S pamgmel 1L 4). $ub- global

owbific rs
e veb dashoas LM.J wad freren. global t\.mis:,wﬁ-?{rm .

Polclucs Coon bmbee s %2@@%«3 Lorms tm

(a.j $1d tofose N s oun w\t@_aer PR ST e
:LSN < f@?}g?ﬁ 'Tf?»ms
b N,

(‘%33 % "y o '%‘\J N whare N (g S, Lnt%gge; L
Y e O N g g9, TThaa
chrie F@mt@m bo 2198 -+ N,

(‘5) % LABEL ot ‘% LAaget + N cohare N s awm Geabos 2.

N
LR LAgEL, iy o PM_mM{«M docahd Lalae ah |

eitbur o doeal lakel & H2 Cueremdt hioote

. *y R §
oc o alobal labol “camadte auails e

J (R 9 ;;. 2

sets Pe slore Po{,-r\.he.{

Sets oo

e ;"ﬁ o e Fooon i@ﬁ:b& .

{_“TMUS\. %...E. UWL fa nﬁf‘:ﬁ.-ﬁu‘ %’?@ﬂ.-“i&,

ﬁ {f"ﬁm ﬁg& Cmrgt‘:m{vw

i G ’%Y%t‘i%%’“ gt%mm“ﬁ | IJ; %{ﬁm
S:Em}ﬁ% IR L ave e dmat iR . : Cg; hzee ohad
cnch Tollowsad ix:; ak 5-2@_53; s %&3:@&%&5 Spoace, ov e 3;:?.‘:}
Bw s Lﬂcxﬂ/,’:} %;&“?gﬁ_ viade of o PY%,"‘ emasy toadl
Thopee, ambsmakicelly, ., FENEIE VR S i feadadt
@%:, o ceersok ym o2 Con ngl.@_ ?ﬁ’u&%&(: I TR,

C&.memh thmm fddress it Pyu wida of
e e g 9 b g106

'&é\«ﬁ ‘:’;}rﬁ.#‘@v:j %31?43

= AP SRR A g

4 i"'e . ,
s Oy Lia e, . @_,W;;Q ’ {)v@u . éwg;;_i é&f—‘s&%

Suvte cdipnke CScess g

Foe @.Wﬂarq,g{{ﬁﬁ N tEn. t::--{ymv-tk Emé;@, «d [

START < 4 20
s b4 g
8 0 R ;
cdasbieakteally sback ab START entun. focdad. -
T samas effeck con be achus
et e Chor .' chhu@"\, %,,- Wu‘fm{}(ﬁ,
1 START

< $

(ﬁ {ﬂ;‘é;”r-f’ ﬁf"? b‘i/um; %;ugl—& L-ﬂ;& '29,@- Y\MM L{* Q. memm f__r;

’lnem:) MSQMH&,&, o‘mtﬁ Iy g, E.Wm S é}‘fﬂ ..%:j ﬂ‘aﬁlﬁnj %

C‘?&l\ﬂ‘% “G‘fl:« ‘3:2) (W«% ?@‘»ﬂ*@'&—i’g\ I’{- 3), Lﬁ- tha zﬁ,(gi; e &g,u Loy e
b be Mﬁeﬂ{ is NOT con-buuad va e lask h\‘vg‘g .,.._,,s i@(? £
sine M b o pded b Ce bl g Ke G

by pumched | whew the "< gyebel s paad)

o wM;Pa 5 .-?W:j

st bvons
2 <« 3+ 3
1%
30
STARET

EN

ascd, Yak
12 <« 3+2

215
STAERT

e dd o gab h’ff G, auwbethet i’:ﬂaa,@r e Froaaten tarin ws‘é&,&@!.

=
8
&
!\’La:j be wsed b ook ve e AUTQSTRET R
4
5

o3

LE 1] 3
Cmm ol e-"wa«*"’:} LN $> TS oz Bty r:m‘:wiw sw}w”wﬁ %Lim} o

vmium UL!{’ eV m,j{, bve. s y.?ﬁc‘._q_‘ﬁ;
_ et e S . _
"ﬂ’::g %’:"‘“@ Seb.Rs ﬁ&- _g'_- ALY } tﬁ'ﬂ o sg ’-&m S sean 1‘)%:3 @vw‘%& &

ek SRR L Lhob Foa i aﬁ? aw . C.e:anrﬁ.a« su.w e /%,5

{%.3. Oplens,

T F-vR8% SR HBa seperske bilks e
,;C::\U_,zstafi.\mﬁ freenings ;

c,f?-hi‘{.’w\.. «Q/\,o\vﬂw t‘?«a

1 list labels - decimal addresses
2 list labels - octal addresses
4. punch zeros for skips
8 set store pointer to 8192
16. - set store pointer to 8§
32.

tie off present Ep.!muﬁ tape with a sumcheck; punch
360 blanks and then punch loader and store pointer
for new binary tape.

Tev addibiow, o clorestow Moy Ao puncheds ok the skucb

e the linony tope by addiag toe size of e store

b setion; Le. @ 192 s addad b e erglrion,
oo cleac ghore enld be (f-m«c}lw«s’x for locmbiovns 2 o LIS,
16384 o amy amee mulbgle o Q12 U odded b the
opiew, bue doar stoes wld ke pu nekiady thae st
b clecs locekions 8192 (porards, sud a geered ke

deae & b G195 Clancly thiis faciliby canm owly be
U«Eéﬁ, W c‘s?}'}i,mwﬁ' e ts PM—CW e f?"ﬁrﬁh ww& ot

\:&;z, Fmgm*“‘t .

AO{:HO‘\« bit 4 and e cooac-ston biks should NOT Lo
WMA cabign Mgemb% a. ww-»e,c,\g waritbewn QIR ?mgmm

DPH&M kb 32 evwablesr a —-f',aﬂé prog @ o de ascembslad
o8 Sevamld /{:me En»?as.

nit@‘“ﬂ‘&éi’\f B‘Lh& % 3 1‘ oond e (‘.«{Q,m,l - thorg 1&‘.:.“\}:5
W«m.\f) e the et ponss, and hihy 4 aed 3 A v
LA e Hie focewd. pRSS the SAME c:-g;i%ﬁ(?\nj

itk tﬁg;,g,- U«A&A?L« &re \r;a*‘t‘ew Pouss eh (c‘ﬁ’a‘usq Gt e Wes

Sumh = clreck ardd %fo,) .

“tk@,u-—é. Yukd

The locating of literals is similar to 1~PASS SIR - i.e. though
it is ofien not necessary to consider where they are to be located, they can be
placed in any block of consecutive locations at will by means of patches,
Literals for the two stores are considered independently. Those for the lower
store will be located immediately following the last location used by the lower
store, and those for the upper store will be located immediately following the

last location used by the upper store.

Programs are allowed to jum;ﬁ from store to store indefinitely.
For example, the following program would be acceptable:-

w23 |locations
L LRABEL 4 #i23] 8
58 .09
& _g3ce) 10
Ctles]
I S 163
A %0 | 164
 he34s . |
b1 112345
B LI 1.
o 5+0 | 8292
CfiReElsy)
4 -l _j 15
x5 b
.3 AR 1 8192
4 o+l | 8193
& .8194
- g o0 | 8195
%

The literals used in the lower store and upper store are treated
independently. In the example, the literals for the lower store are +123
&306, -1 and the literals for the upper store are +1, -1.

The lower store literals will be located in locations 16, 17, 18
(because 15 is the last location used in the lower store) and the upper store
literals will be located in locations 8196, 8197 {because 8195 is the last location
used in the upper store). Please note that the upper store literals are not located

in the order they are written,

13.5. Rogembbe & W}Q,' & te label LL:;%;_, _

RENS 'bﬁwioe g “fl'"?{%Sg SR ‘:gfi:;{'*:ga_gj earggno,::EM@&L ¥

4 s rmad, s
j\::j el lasbaseliovs e Mese a, The GIR Talicsda
b&gﬁ y o A00-Seoies Telsosde er Qg0 Telpcedle oma resdl e Meds 3.

The Aiest E:&.f%?“ vt evberad ok @
Har otfrrs ol 4,

o 13.} anddh, edb

Durvag e Rt pasr He ossendsles chacks for
e sbores | the dileblonang, Titles, evrar wecdiicalisng

(& %3 & oddrasses oF “ Aalsels {4 op biow ks 4o d
are. ?mmwﬁr} wrr erwkpurk o bl preate e 980
Telecode B the fust brpe coms ouberad ok §, owd

W A4OD-Serlps Teleesde 6 the Rt kg wrma anbered
ek 12, L ocak {ﬁ.(ze:éf et precadad by 2 gpaces.
Rw.&b«is et ovdy stop o helbeeods i leed or

F o slore-fRM T e fpabhk’ enee (ES) i encounberad,

Lerees

Whesn o VA S veosd | o Mo SSeae f e Foene

FIRST NEXTA NEXT2 BICT

8 5433 42345 306%

endh be punclued, el ra. FIRST iz the HLocsesk \peskion
usest byt prograve, NEXTL omd NEXTY oe Ha
next aswlakls LQC.@L}C.\GV‘K&) oafter e lileele S, Han Locwer
e, upper stre wodades (not recemanty B Aiglaat
docakions tted by Ha progmve 1 Hus FIRST dhas He
saent e a5 e [-~fASS SR 2fefts, beb NEXTL oy
ret be e taea ag LAST o8 1-1Ass SR plos aove, albhouwsly
ko oofaa s BT bndieodsn Hea pecosuboae of ’

L Lr:&-r i}{‘-& C‘L«L C.i’i’;iﬁ?’uﬁxv‘d L% 4 91 V"!‘:.S ?q ol <2 LU'SQQL bg} M&Q““-*iﬁ{é t’%ﬁ,gw P rDS e

e sacond pest s wade b:} el ,mxﬁ tae £t %‘ﬁ?fs:, wb
10 awd ol offhas b g I erveny cemtae Amundd o
Yoo Ak pari the assenabler S‘i‘iﬁg&., e endered ol 10 }
AR, e wuwiber of oeves - uw e accumadabon En-ty:j 13
tsed e wicd b ssserebla Le sedn of Btz e,

'.bunv% . tﬁ,\% g@mﬂ;&” pats, HYos i:_;im-w.ﬁ _ _L“F’f%‘ﬁ—é -t [g—,-,?a.\‘ Gk

' {:mcﬁmw—.ﬂiﬁ _‘C’E_«& Cnunadsee 0 oad 1;@5%%&/5 -\g}::;},_‘:.,.-»ﬁ,;; e g&«m:ﬁ.&r _f{fﬂ@-v\ :

e mwf&%r mg, @g’wﬂas w’u%ﬂw%zvg X‘:nk, 31, - : : : 4‘4‘1 .

1. ¢,

mum..gngq izzﬁww é&aﬁ'fﬁ.mumg & CubE Gv«tjg&{@ﬁ f%m{_, &
e S — i3 3

ﬁ"’-@* G} {r@%”l‘ﬂ*ﬂg . ﬁi’ﬁuﬂ{‘i"g m*ﬁ-ﬁ~-eg.@ ng

: " o pvomsmoss . tha esgocelogd
C&M%‘kmﬂftﬁ % 3{;‘«4,, W“ﬁf"‘ [+ % m?::i éf’év &g‘& &g‘g@vﬂfi?a&,ﬁ L,
1]
'%3.%,. cﬁ%.ﬁu}‘r’?@. Q.AG}‘« 3.1 e “’%’w%ﬂv #g ,,,? %’ﬂ !
? : : ¢ i {6} % e Bt
RO | 3 ey ebeds ot g
iy A T ﬁ%iﬁﬁﬁ%ﬁﬁém,ﬁ K :Ei%

Suppose oo %ﬂ' progemne Aeg

E‘&‘ga by 2-pass i, Praced n Ha o cbore) gnd g,
mastebee e L0 VU A B vy
steke Lo e jepase i

(o

T et Comp Qe ki -’%}é’m}:’\j

e RO vire

)

% SS ek ‘5.12!“ o ﬁ#““x%{ﬁ}) e Sarned o
. ¥

e Ay -(‘“nﬁ T m»néﬁam Lo

A0 '
Lty Lo tanas
Efrw, C‘gmllﬁ'w-{iﬁﬂ\ maﬁx%u ", iM:ﬁ \\3
G

The %:LS Moy congist of

patelius oad Gesbrusbiess & Mavy - pefer by
%&o“mmi '{ﬂJa@iS QCM'%\M um e e ?w%mﬁ% N 1“‘?

o p akel. oecire = P A o Eoesk %Lagg ab Lo ot ingy
(90 Y Py e Lo s Ay 3Lo bal o M o Aeeee

progy ey, Aok pokrine afber Hae flesk %&B‘QG&Q Sk

sd b £ T veeean E‘J’Wixa ER = 2;-,:‘1 Yals &
vwe Han Fzmaﬂa‘iﬁwﬁ g lobhad Lis E, Tt eppmas b

LLDEITAy o shaut o %\3 kP, Gan option - oAb s i,
‘gl e 84&4@%‘ :

Qﬁx&:} op %‘ e

To campile a &43, P{gu&, e C{.Um{s of e cixlcf“{f’mm

amd osseebloe ko e shee Cg;m%méz,h. o arobigs
\'\’Lo&,i:uﬁmﬁ-) 39:3 nesnl of Lt f msMcﬁnmg “Tha sk

pus o e fig U5 enberad ot M (Gn whid

Gia e
e Llersl ol e doceted o wsusw,&-,;%‘ e, aficr e

Lonal wthias o2 e shoe, P aunters of Mha Hvia ‘> av
et 15 (v el came B Lheels ol be localid
after 0o Uberal; of W weode prosmve (on pretring,
»'«%{pﬂg assenablod) . Evlor tla %,m‘ amoc. ok {0

e ordis b olhbeiman

<% i(} u-m@:j &fﬁ?@. -

Label {acts puncired whil oqs:mmi:iw\% '{‘Wx-—« Cenlt be
Cten '?:3:,_.5;.__ Suwsme ﬁ?%{g,g;,gia, o E’%m&?& o s vr__\.w.-v_;,w il‘l‘&f-a’;,

45,

LY S

PR s"‘a.,{

o Eevee Fods conbien g,

Basleally e tndicalions are e sere ar wfiew SPASS SR g

used e e

o
formse chamckecy,

Ly

(‘5 EL e %e,ﬁﬁa.w L.g’ [SHPN _,:jva_m& (

(a)

e, wE e

N fx—mc, rm::.*céf..ﬁ;) i‘mij oeg. p.@mgg hj i

and, %cajoﬁ 2 fw.tmﬁ,wé; @ i’“‘“"
uwwma MQW&A [SWE- S;Uﬁ‘wa’uj &4““?*? ﬁixuﬁ,\;tjf{; N

v owsed B BF B 8192

FRLLAL A m,ntg

o tha "{”}ziﬁw@mﬁwﬁ $

Unlocated identifier in a labelled patch (e. g. } PASS + 2).
This will a always occur if, for example, a tape consisting
of such things is entered at 8 {which always effectively
destroys the present dictionary) instead of 9, M~or 15,

Diebionany Store AL,
The storc pointer falls outside one of the following ranges:

1 { SP ¢ 8166
8192 { SP £ 16383

A skip has caused a transition {rom one store to the
other, The only means of doing this is by using a patch
or option.

('\'\i) ES ol be awenm o Fo.,,rlk-:j erroes,

(‘Ev) E LL' ‘AJ"_,{,'E
vdewkifvac

(vy 2-rass
()
(v

(e)

&

b Q«LU\QM b cf o & head, doe gonw %\g‘acd.
%SJJ !ﬁc&i. L;&i\‘. Vi P k‘ffu,z.-'\,,

APpanes . Ovik VLG .
st will g1op
3¢ any g dees nob stact witfe e
Bt tﬁg__ start o e sccovdh pass, uf | Crvand coart found
e bhe Lot prss 4 el |\ ‘3)

odd.ress b w label

Wm et trtinn e b "gL'ri E w iy

» "
4 Filiitnr Luﬁ_sz,.

(S«zv ke
:i}ur;-a&ii ftg% Sqearen y.»-‘é- ?0\.("& &fi“ E’gﬁ_sa-
&Aﬂ;ﬁﬁéﬁ ¢ with e
(prs babley, coug ;:,Lﬁ L ! i b ey %u.?es tam mxﬁnﬁ ot ._‘-:.s"’}

oy hod :
When %o i wad on Ha sccend poess

(i.e. bhelor
Yo Llemls km].> T

Sura ohe e bl
;,lm..ra;.&r;_s% rasd ow o e fesh & 50

cosl pateey

vg?xgﬁk;g !:;—é'_ﬁ,w ?Uf‘u‘;

i '
LRASULA Gk, o

A

!':}3-_ %,’ gu:’ﬂr“ﬁ&.r‘”%{ t)“;" gv"-%;’f“mg ?aw—-%f

8. FBeaxd ;{x;k-sé tapr fu Rest poss
label Lisks

or ervnr twelico b gt o RGO .
9. Rood Aurblace %’:m? 2t Mur Resk poss.
{a. aad Aush iﬁ“&? £ o Sewad poss,
14, Haad %f{r‘:farw %mgﬁ £or geoend, PR s,

14, Hand ’{;A’ﬁ £ . : Emg‘k{iw gﬁf '@’\K by 5; Y;, a5, g‘}’}‘;,u‘uﬁfg
: wd
Labol Lic bS or ervov vndhoncalbl e

+

. ra, = *
Ak %C‘E} il g&mw¢ﬁ w

13, Sowvne af K?_, Lok Lﬁe’u&% Crreve g;‘wfwi "y ‘%-/.i"&?:- Sl S,
i
{, Sorma af € ae 4, bub webaien die Ioviga g,
is. Semne atl g or 1&, .y hebiohe duleba e B loeets.

Libemls aktee Lk aru ks y

7 c@ P\ tann, ‘%:m..?é‘; .
‘é}. ':Dum{-ﬁ Ascreblor -+ I ic'!cf;ov\amcj .

9. Binam, beper punchied du O-PASS SR,

e Eom% bages poneliast by “2-PASE IR, _‘:f-/;/h,:i.g}

e i‘wl&ﬁ,«v&j t“i@wg‘;:"; 3 °
N,

Oht [“ A C Qo0 -~ Sovay \g-F&h
E'Lm,v:j Téx?e:, foreraat, /ﬂ%f[T’ ar dovedsed

elsecntinne |

. 1 I
S s VES N

'T'fm:j O e WY Shosg, % :j e bvad

u.g‘mwj La se P PO tode 2. "”ﬁgmﬁj Q. Sen - g obied 3

W the check Lo £, tonbraamog cubpul {f gluen e
A

\;:‘@,ﬁ, f; 13y c:.-‘%.«. :;; ‘.,g; .{,lf; Swcea ;—_,a;ﬁm & E’e\ﬁw E:?/az P’ﬁ“& % CEA 18

Eev qaer il (ot thas Lo lls ’Lf:; s been uged , San.

E} cx,f“_a,ﬁm. wf f« ! "F’F .:} o Lo céj AELOTLAS E&c? Ls l-»’9‘;:ulj«‘-_cima ; .

o
-i-n‘g.i

.

g._.
PAS
g
SIA ok
pLe
EETaTa

RS-

e

. o %Sﬁl»f-?g"s criln cope 4 o %:}“ﬁé {w‘ﬁ i
Jo sigw, e Fllewad hy o dolbesde o
o rg‘w {g‘;&f _,i_;ﬁ;';, mhg" Pl ﬁﬁ*g%ﬁ.@“fv‘i Q;&kﬁ iff,_g,y

prass b LMAQM% s ézw Late et Ve PASS ook

Tophss St&,

Snca bt “"m,{,;ﬂq,q trgk, ok N L ikl PTARE e @3 g
b cae aorla Lok B e Swsgy sl Wk %{*ﬁfj}
ars peamdie o ,m&éiay,e '\“fz‘m‘*;;% avd deukibied A

b{i«&“ VB AL QL\»@T*’“ '

gty Eod
Cplions £y, i- pets SIR

} .
%33 Decimal & Ot Lobels g!&_{rx St aiseebls B B
s 2oz o o
. e 05; Ereae opasng shomabad Ko
s *22 No i Uied ab (e Sk oL

g a@m«,i;s{rf}
*3 DPetamsl U Cotnl -

o gy y .
Yol tog op e A ey fae wted DURING

%2 Mo o mssew...%;,{:s o gioad o E»i"&{n L

Wsefud :
Tl eebioes fag 9. g SIR

*16 No
L&%&Qi} l .
5 2 kd..{?f f..% ﬂi“"’f’ 4 ﬂi“a.f. Tyl i&{,{ 'Fv".’ Fiee %.
i One of tfheae cobime .

%19 Deciwnl L Oglad e

&
{;'('"@ ‘«Jﬁ;,} ;{a LA P

I B T
Poass bee £l iis,‘ <

#20 No »

Spast
W i i')__“

=23 B v of A oebo » .
: 5

%

